ed
qed
text \
theorem lim_unique:
assumes «((x \
shows «l = m»
proof –
have «\
text \
real-valued sequence, and prove a few basic theorems.\
context metric_space
begin
definition lim_infinity :: «(nat \
where «lim_infinity x l \
lemma lim_infinity_I:
assumes «\
shows «(lim_infinity x l)»
using assms unfolding lim_infinity_def by auto
lemma lim_infinity_D:
assumes «(lim_infinity x l)» and «y > l»
shows «\
using assms unfolding lim_infinity_def by auto
theorem lim_infinity_const:
assumes «c \
shows «(lim_infinity (\
proof –
have «\
using assms by auto
thus ?thesis unfolding lim_infinity_def by auto
qed
end
subsection \
text \
real-valued sequence, and prove a few basic theorems.\
context metric_space
begin
definition lim_minus_infinity :: «(nat \
where «lim_minus_infinity x l \
lemma lim_minus_infinity_I:
assumes «\
shows «(lim_minus_infinity x l)»
using assms unfolding lim_minus_infinity_def by auto
lemma lim_minus_infinity_D:
assumes «(lim_minus_infinity x l)» and «y < l"
shows "\
using assms unfolding lim_minus_infinity_def by auto
theorem lim_minus_infinity_const:
assumes «c \
shows «(lim_minus_infinity (\
proof –
have «\
using assms by auto
thus ?thesis unfolding lim_minus_infinity_def by auto
qed
end
subsection \
text \
for a real-valued sequence, and prove a few basic theorems.\
context metric_space
begin
definition lim_sup :: «(nat \
where «lim_sup x l \
lemma lim_sup_I:
assumes «\
shows «(lim_sup x l)»
using assms unfolding lim_sup_def by auto
lemma lim_sup_D:
assumes «(lim_sup x l)» and «y > l»
shows «\
using assms unfolding lim_sup_def by auto
definition lim_inf :: «(nat \
where «lim_inf x l \
text \
space, and prove a few basic theorems.\
context topological_space
begin
definition tendsto :: «(‘a \
where «tendsto f l \
lemma tendsto_I:
assumes «\
shows «(tendsto f l)»
using assms unfolding tendsto_def by auto
lemma tendsto_D:
assumes «(tendsto f l)» and «open U» and «l \
shows «\
using assms unfolding tendsto_def by auto
theorem tendsto_const:
shows «(tendsto (\
proof –
have «\
by auto
thus ?thesis unfolding tendsto_def by auto
qed
end
subsection \
text \
in a metric space, and prove a few basic theorems.\
context metric_space
begin
definition cauchy :: «(nat \
where «cauchy x \
shows «\
text \
in a metric space.\
context metric_space
begin
theorem lim_I:
assumes «\
using assms unfolding tendsto_def by auto
theorem lim_D:
assumes «(x \
shows «\
theorem lim_const:
shows «(\
proof –
have «\
theorem lim_add:
assumes «(x \
shows «((\
proof –
have «\
moreover have «\
moreover have «\
ultimately have «\